
Controlling hardware keyboards (charMaps file)

| 1

The hardware keyboard of some devices must be customized if some keys don’t work correctly.

You can use the “Hardware keyboard info” option at Test Menu option (at the top of the screen of
Profiles or Process screen)

This utility will help you to configure the _tnx_charMaps.jcf configuration file if necessary.

This file has the following structure for each “customized” keyboard:

Model and DeviceType: identifies the model of the device. Some of these models have different
keypads and these need to be identified to.
Maker: identifies the manufacturer of the device.
3LetterKey: parameters applied to devices with T9 keyboard.
SpecialKeys: contains each scan code corresponding to special diacritic keys (such as blue or
yellow keys, alt, shift, ctrl, etc)
Filters: contains a list of specified keys with special functionality or even if some of the
hardware keys are ignored.

Controlling hardware keyboards (charMaps file)

| 2

Keyboard test and _tnx_charMaps.jcf
Model
The device model is identified in the Main Menu (right top of the profiles screen), About option:

Peculiarities
We must differentiate between the models of MC33 devices:

Controlling hardware keyboards (charMaps file)

| 3

In _tnx_charMaps.jcf we must add some difference in the Model name parameter depending on the
keypad we are using and use the Description parameter to define it. For example:

 "model": "MC33",
 "deviceType": "7",
 "maker": "Zebra",
 "description": "MC33 device with ABC, DEF keys.",
....
 "model": "MC33",
 "deviceType": "6",
 "maker": "Zebra",
 "description": "MC33 device with a complete keyboard",

You can obtain the value of the “deviceType” depending on the Manufacturer:

For Zebra devices (such as MC33):

adb shell getprop ro.config.device.keyboard

For the 29 keypad device, the command will return “7”
For the 38 keypad device, it will return “6”
For the 47 keypad device, it will return “5”

For Honeywell devices (such as CK65):

adb shell getprop ro.hon.plat.keypad

For the 51-key alphanumeric device, the command will return “qwerty”
For the 38-key numeric keypad, it will return “numeric”

Controlling hardware keyboards (charMaps file)

| 4

NOTE:

Please, indicate the value “0” for those Zebra devices which no device type is specified.

"deviceType": "0"

3LetterKey parameters
Some devices like Zebra MC33 or Honeywell EDA60K has a T9 keyboard (29 keys):

We use the following parameters:

 "3LetterKeyDelay": 1500,
 "3LetterKeyDevices": null,
 "3LetterKeyBSFix": false,

To use this kind of keypads, we use the “3LetterKeyDelay” to wait for the correct character pressed to
be displayed.

In case of the device inserts a backspace between each character pressed, such as EDA60K, we must
set the “3LetterKeyBSFix” parameter to TRUE. This will ignore all the backspace characters sent until
the “3LetterKeyDelay” time is got.

Use the “3LetterKeyDevices” if the Device IDs change in the use of some specific keys.

Controlling hardware keyboards (charMaps file)

| 5

Peculiarities
MC33 29-keys requires to activate the Cap Locks key (press Shift key twice) to display every
character in the key in capital letters. Otherwise, only the first letter in the key will be displayed in a
capital letter, not the following ones.

Special Keys
Special keys will be ignored because they are diacritic keys for performing a complete action. If you
want, you could add any kind of key you need to be ignored.

All the keys specified in this section will be displayed in the log file.

Some examples of special keys we can find in these devices are the blue and yellow keys for
activating alpha mode or function keys, the CTRL key, the SHIFT key, etc.

These keys must be identified at this parameter “specialKeys” for each device. You can use the
Keyboard hardware info, as we mentioned, to fill in the values for each field.

For example, if we press the BLUE key at keyboard test, we obtain the following result:

To configure our customized _tnx_charMap.jcf file we must pay attention at binomials ACTION_DOWN
– ACTION_UP. None of an ACTION_UP is valid without an ACTION_DOWN.

Controlling hardware keyboards (charMaps file)

| 6

So, for the BLUE key at THIS device, we must configure the DeviceID and the ScanCode data.

"specialKeys": [
 {
 "label": "blue",
 "deviceId": 8,
 "scanCode": 62,
 "icon": {
 "on": true,
 "color": "#0000ff",
 "toggleMode": false,
 "toggleModeDouble": false,
 "toggleIgnoreScanCodeMap": [],
 "onWhenKeyCodeMap": [24, 25, 55, 62, 70],
 "onWhenScanCodeMap": [],
 "onWhenSequenceMap": [{
 "code": "key",
 "description": "Android keys",
 "from": 29,
 "to": 54
 }]
 }
 }
],

New params from TellNext v1.0.17.503
The “scanCode” parameter has been deprecated. Though it is still valid for backwards
compatibility. For new keyboards, use the default value 0. Use the new parameters
“keyCodes: []” and “scanCodes: []” to indicate the keycodes or scancodes to check. Value
-1 means that any keycode/scancode is valid.
The “mode“ parameter has also been added in this version. This parameter indicates the
Keyboard operating mode. The LegacyMode is the normal treatment of the keyboards.

Icons parameter
Some specific icons are displayed for the user to identify which special keys are active or not. The
icon parameter is used in the following way:

on: whether to show the icon or not for the defined special key
color: the color code you want to display in the CommandBar. Hex format.
display: indicates which icons will be displayed. For example, you have SHIFT and
CAPS LOCK. You don’t want to show an icon when pressing SHIFT, but you want an
icon when you press CAPS LOCK. Use the value “ShowDouble” to display the
maintained CAPS LOCK icon, instead of the temporary icon (SHIFT = “ShowSingle”).

Controlling hardware keyboards (charMaps file)

| 7

The value “ShowBoth” will show both icons.
toggleMode: if true, the icon will only be visible until another key is pressed.
toggleModeDouble: If the same key was pressed twice, the mode will be permanent
and not de-activated until the user presses this key again. This parameter can only
be active together with ‘toggleMode’ set to true.
toggleIgnoreScanCodeMap: Scan codes to ignore while the key is active. If any of
these keys are found, the toggle will be canceled and the state will stay the same
as before (i.e. the state doesn’t change). Use when ‘toggleMode’ is true.
onWhenKeyCodeMap, onWhenScanCodeMap, onWhenSequenceMap: activate the
icon when the keycodes, scancodes or sequence indicated are pressed

NOTES:

Use the specific labels in the config file for Shift, Ctrl and Alt keys.

"specialKeys": [
 {
 "label": "shift", / "label": "ctrl", / "label": "alt", / "label": "numlock",

A specific icon will be displayed in the upper bar of the screen in the following way:

In case the “label” parameter is not correctly written, the icon for the special key will be the
color set in the “icon.color” parameter.

View Annex for the detailed function of the Hardware test at TellNext.

Filters
At the “Filters” section, we can block some other keys using simple arrays or a range of
keycodes/scancodes.

An example of this:

For all keyboards (deviceId), the key with Keycode 59 and the key with ScanCode
59 are ignored

http://tellnext.net/wp-content/uploads/2019/02/hw_kw_icon.png
http://tellnext.net/docs/tellnext/how-tos/hardware-keyboards-control/hardware-keyboard-info-at-tellnext-annex/

Controlling hardware keyboards (charMaps file)

| 8

For keyboard 9 (deviceId), the keys with ScanCodes between 0 and 100 (both
included) are ignored

"filters": [
 {
 "deviceId": "",
 "android2Unicode": true,
 "blockKeyCodeMap": [59],
 "blockScanCodeMap": [59],
 "convert": [],
 "blockSequenceMap": []
 },
 {
 "deviceId": "9",
 "android2Unicode": true,
 "blockKeyCodeMap": [],
 "blockScanCodeMap": [],
 "convert": [],
 "blockSequenceMap": [
 {
 "code": "scan",
 "from": 0,
 "to": 100
 }
]
 }
]

“android2Unicode”: converts an Android keycode into a standard Unicode keycode. Set always as
true.

Peculiarities
In some cases, we might need to remap some keys. See the example to remap some function keys at
Honeywell CK75:

Controlling hardware keyboards (charMaps file)

| 9

"convert": [
 {
 "label": "f13",
 "scanCode": 183,
 "internalCommand": "200D"
 },
 {
 "label": "f14",
 "scanCode": 184,
 "internalCommand": "200E"
 }

In MC33 with 29-key keyboard, there could be a problem with the ENTER key, because it has the
same scanCode as the “S” key. To solve this issue we must configure the keycode for processing this
key. The corresponding keycode is displayed by the Hardware Keyboard Info menu option.

"convert": [
 {
 "label": "enter",
 "keyCode": 66,
 "scanCode": 28,
 "internalCommand": "d"
 }

New params from TellNext v1.0.17.503
We can use some combinations of keys, so we need also a remapping of these keys. See the use of
the new inMetaState and outMetaState parameters to understand how they work:

inMetaState: meta key that should be active for the key to be converted.
outMetaState: lets you change the meta state. Used for special combinations.

See the examples in the TellNext_hardware_keyboard documentation

